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The random phase approximation and crystal field 
effects in magnetism: S = 3/2 
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School of Physics, University of New South Wales, Kensington, NSW 2033, Australia 

Received 22 May 1990, in final form 24 September 1990 

Abstract. A novel solution to the problem of incorporating crystal field interactions into the 
RPA model of an Heisenberg ferromagnet, known as the transformed Hamiltonian/random 
phase approximation (TH/RPA), is applied to an easy axis S = 3/2 Heisenberg ferromagnet, 
subject to an axially symmetric quadrupole interaction. It is demonstrated that unique 
solutions can be obtained for the ensemble averages. In addition, it is shown that (i) in the 
limit T+ 0 K and D -+ 0 the usual spin wave result is obtained, (ii) three excitation branches 
are present, which exhibit dispersion at finite temperatures, (iii) a unique solution can be 
obtained for the Curie temperature T, in the presence of crystal fields, in contrast to 
earlier work, and (iv) a two-parameter analogue of the Callen and Shtrikman single-particle 
generating function can be constructed which exactly mimics the TH/RPA ensemble averages. 

1. Introduction 

Incorporating crystal field interactions into the random phase approximation (RPA) for 
a Heisenberg ferromagnet has been an unresolved problem in the literature for many 
years (see for example Devlin (1971), Haley and Erdos (1972), Egami and Brooks (1975) 
and Haley (1978)). The central problem is that of devising a consistent decoupling 
scheme which allows ensemble averages to be calculated in a unique manner from the 
differing Green function equations which arise. Recently, however , a novel solution to 
this problem has been devised by Bowden and Martin (1990a), using the simple example 
of an easy axis spin S = 1 ferromagnet, subject to bath Heisenberg exchange and an 
axially symmetric quadrupole crystal field interaction. The method employed by these 
authors has been termed the transformed Hamiltonian/random phase approximation 
(TH/RPA). 

In this paper, the TX/RPA is applied to the case of an easy axis S = 3/2 ferromagnet. 
As with the S = 1 case, the TX/RPA is found to yield unique solutions for the ensemble 
averages (PA), (fi) etc. In addition, it is shown that (i) the three excitation branches (for 
S = 3/2) exhibit dispersion at finite temperatures, (ii) in the limit T+ 0 K and D + 0, 
the usual spin wave result is obtained, and (iii) the TXIRPA solution can be exactly 
mimicked by an equivalent two-parameter effective single-particle model, in the spirit 
of Callen and Shtrikman (1965). 

Finally, both the TX/RPA and RPA are used to calculate the Curie temperature Tc for 
various values of the crystal field parameter D and the magnetic exchange anisotropy 
K(0). It is found that the TX/RPA results are disappointingly close to the molecular field 
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predictions. Nevertheless, the TX/RPA represents a considerable advance over earlier 
modifications of RPA theory which showed unphysical behaviour in that TC+O as 
D +  m. 

2. S = 3/2 Heisenberg ferromagnet with an axially symmetric quadratic crystal field 

The Hamiltonian in question can be written in the form 

1 
- 2 D-{3S2( i )2  - S(S + 1)) (1) 

I q 6  

where J ,  ( K , )  is the isotropic (anisotropic) exchange between the ith and jth atoms and 
D is the axially symmetric second-order crystal field parameter. Note that for D > 0, 
the easy direction of the magnetization lies along the z axis. Thus below the Curie 
temperature Tc, the ensemble averages (Si), where IZ = 1,2 ,  etc, are non-zero. 

Following Bowden and Martin (1990a), however, we choose to use unit irreducible 
tensor operators c, in place of the Cartesian operators S ,  etc, because of their superior 
commutation, construction, contraction and rotational properties. In tensorial form, 
for S = 3/2, therefore 

x = -q/Sg@App{z,fh(i)) - ~ ~ ~ f ~ , ~ 5 J f , [ f ~ ( i ) f h ( j )  - T ! ( i ) f ! l ( j )  - f!l(i)fi(j)] 
- tz {,$Kf, fh (i) fh ( j )  - d6D{2  , fi (i)} (2) 

where the q ( a )  are defined, for example, by Buckmaster et al(1972) and Bowden etaf 
(1986). 

3. THIRPA: the quadrupole interaction representation 

We first make use of the ‘interaction representation’ to transform away the strong single- 
ion crystal field terms in equations (1) and (2) (Bowden and Martin 1990a). Using the 
time-dependent unitary transformation 

N 

O(t) = n exp{i[d/sDf;(j)/fi]t} = exp{i [d6Dfi(j)/h]t} (3) 
j =  1 i 

we find, after some manipulation, 

= i r ( y ) + ~ i r ( t )  - ihir(t)+ air(t)/at  

= -d/Sg,U,gB~pp{Xifh(i)} - % ( J v  + Kjj)TA(i)T,$(j) 
ti.il 

+ % xJfj{[fh(i)fL1(j) + fil(i)fi(j)][t + bcos(d6Dt/fi)12 

+ [ f: (i) f?l ( j )  + f! (i) f! (j)]![sin( v6Dt/h)] 

+ [ f : ( i ) f? l ( j )  + f!l(i)f:(j)]&[c~~(q6Dt/h) - 1]* 

(Li) 
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where use has been made of the identities 

O(t)+ fi l( i)O(t)  = ?fl(i)  [i + b cos(d6Dt/h)] Ti f%l( i )  (d3/d5) sin(d6Dt/h) 

+ f3+l(i)(d6/5)[~~~(d6Dt/h) -11 ( 5 )  

T if: (i) ( d 2 / d 5 )  sin( d6Dt /h)  (6) 

+ f i l  (i) [3 + 2 cos(d6Dt/h)] (7) 

O(t)tf2,1(i)o(t) = T i f f l ( i ) ( d 3 / d 5 )  sin(d6Dt/h) + T%I(i)  cos(d6Dt/h) 

U(t ) t  f:, ( i )o( t )  = f~l(i)(d6/5)[cos(d6Dt/h) -11 T i f ; l ( i ) (d2 /d5 )  sin(d6Dt/h) 

for S = 3/2 spin ensembles. 

2d6D/h  in equation (4). Thus 
Secondly, we drop the terms oscillating at the high frequencies of d 6 D / h  and 

+ $ ~ J t l { [ f ~ ( i ) f ! l ( j )  + f!1(i)fi(j)](17/50) 

+ [ f ? ( i ) P L ( j )  + f ? l ( i ) f f ( j ) ] ( 3 / ~ ~ )  

Il.1) 

+ [ f ; ( i ) f ! l ( j )  + f!.L(i)f:(j)](9/25) 

- [ f : ( i ) f L l ( j )  + f!lf;(j) + fi(i)f!l(j) + f!l(i)fi(j)](d6/50)}. 
(8) 

Note the appearance of the rank 2 and rank 3 tensors in the exchange terms of equation 
(8). These are generated by the ‘beating’ of the Heisenberg exchange term with the 
single-ion quadrupole interaction. 

Thirdly, now that the important exchange terms have been identified, we transform 
back to the laboratory frame. As with the S = 1 problem, we find that the truncated 
Hamiltonian of equation (8) is ‘invariant’ with respect to the quadrupolar transformation 
of equation (3). Thus in the laboratory frame the transformed Hamiltonian may be re- 
expressed in the form 

%nod = X;nt + X D  (9) 

where the full crystal field Hamiltonian XD has now been recovered. 
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Given the Hamiltonian of equation ( 9 ) ,  Green's function theory can be employed to 
generate three coupled equations of motion: 

E ( ( f i ( I ) ;  ?l(m))) = U 1 [ n ] ( f i ( m ) ) 8 / ~ / ( 2 n )  + gPBBApp((fi(1); fi~(m))) 

+ V'5 CW/, + q((f;("; fidm))) 
j#/ 

- 17/50J, (( f; ( I )  

- 5 J , { ( 3 d 2 / 1 0 d 5 ) ( ( f ~ ( I ) f ~ 1 ( j ) ;  fil(m))) 

+ ( 3 d 2 / 1 0 d 5 )  (( 

+ (9V'6/25V'5) (( f: (I)?: ( j ) ;  

- ( d 6 / 5 0 )  (( f$ ( 1 )  ?I ( j )  ; ? (m))) 
- ( 6 / 5 0 d 5 )  (( fa ( I )  ft ( j )  ; fi (m))) 

( j )  ; f!! (m)))} 

j # /  

( I )  f! ( j ) ;  fi (m))) + (9/25) (( fi ( I )  f! ( j ) ;  fil (m))) 
(m))) 

- ( d 6 / 5 0 d 5 ) ( ( ~ ; ( 1 ) f ~ ( j ) ;  P!l(m)))}  

+ ( 3 d 2 / V ' 5 ) D ( ( f ; ( I ) ;  fil(m))) 
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Table 1. 

- d6 - - 0 
-1 -v3 
VS dS v5 1 -  0 

- v2 
v5 - 0 0 

-2 - -v3 -1 
v5 vs - v5 2 -  

- ( 9 / 2 5 v 5 ) ( ( f A ( I ) f ~ ( j ) ;  P!l(m))) 

+ ( 1 2 / 2 5 v 5 )  (( fi ( I )  f: ( j ) ;  f'!! (m))) - ( v 6 / 5 0 )  ((fi ( I )  f!. I ( j ) ;  f'!- I (m))) 

+ ( v 6 / 5 O d 5 ) ~ f b ( l ) f ~ ( j ) ;  f'!-,(m)))} (12) 

where the coefficients u l [ n ] ,  a 2 [ n ] ,  u3[n] ,  u,[n], a5[n] and u6[n],  for n = 1, 2 and 3 ,  are 
simple numerical coefficients defined in table 1. On implementing the RPA, and invoking 
translational invariance, equations (10)-(12) are transformed to the following three 
equations. 

pl(m))) = ul[n](fi(m))s,m/(2n> + gpEiBAPP((ft(l); fil(m))) 
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where 

and 

~ ( k )  = 2 J ,  exp[ik s,,] (22) 
i 

respectively. Thus the three poles of the Greens functions G,,  G2 and G3 are given by 

El(k) = gpBBAPP + q/5(fi){J(0) + K ( 0 ) )  

- 3{(1/2V5)(fA) + ; ( P i )  + (l/V5)(Q)}J(k) + V6D (23a) 
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(23b) E2(k) = g p B B A P P  + V5(fl!l){J(O) + K(o) )  - (2/V5){(fh) - 3(f,3>)J(k) 

E3 ( k )  = g p B  B A P P  + V5( fi) + K(O)) 

- 3{(1/2V5)(fA) - i(f,”) + (l/’V5)(T;)}J(k) - V6D. (23c) 
Note that the excitation energies are characterized by single-ion crystal field excitations 
in the limit D +  t ~ ,  and spin waves in the limit D- 0. In particular, when D = 0 and 
T+ 0 K,  the usual spin wave result 

E l  ( k )  + 81”BBAPP + % J ( O )  + K(o)  - J ( k ) )  (24) 

(f;)T=o = 3/2V5 ( T O ) T = O  = 2 (fi)T=,, = 1/2V5. (25) 

is obtained, where we have made use of the identities 
“ 2  

In practice, equations (16)-(18) must be solved simultaneously to yield explicit 
solutions for G1, G 2  and G3. Once these have been determined, expressions for 
((T: ( I ) ;  (m))),  (( f ? ( l ) ;  TYI  (m))) and (( f : ( l ) ;  f’!!, (m))), and hence the correlationfunc- 
tions, can be obtained by invoking the inverse spatial Fourier transforms 

( ( f i ( 1 ) ;  k l ( m ) ) )  = N - I C k C I  exp[+ik- ( R I  - R , ) ]  

( ( f ! ( l ) ;  f”-l(m))) = N - l X k C 2  exp[+ik. ( R I  - R , ) ]  

( ( f : ( l ) ;  f!-l(m))) = N - I Z k G 2  exp[+ik. ( R ,  - R,)] 

(26) 

(27) 

(28) 
and subsequently applying the spectral theorem (Zubarev 1960). In this way we obtain 
the self-correlation functions 

and 

which is our principal result. In these equations, the qj j  are thermal weighting functions 
which depend implicitly on the excitation branches E l ( k ) ,  E 2 ( k )  and E, (k ) .  Using 
equations (16)-(18) and (23), we find that 
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where the three functions qu, q b ,  and qc are simply the occupation numbers for the 
three excitation branches taken separately: 

It is worth noting that the qlj obtained from the TH/RPA results are just simple linear 
combinations of the individual occupation numbers qu, q b  and qcfor  the three excitation 
branches. In the ordinary RPA, such simple expressions for the q,, do not emerge. 

Next, we note that the three self-correlation functions of equations (29)-(31) can be 
used, independently, to generate the set of ensemble averages (TA), (Ti) and (pi). 
However, as with the TH/RPA treatment of the S = 1 ferromagnet, it is found that all 
three self-correlation functions yield the same, unique, ensemble averages: 

(34)  
(3  + 4 q o  + 3 q b  + 3y?c  + 3 q u q b  + 4 q u q c  + 3 q b q c >  

2V5r1  + 2 q u  + q b  + q c  + 3 q u q b  + 2 q o q c  + q b q c  + 4 q o q b q c l  
(TA) = 

(36) 
(1 - 2 q u  + v b  + q c  + q a q b  - 2 q u q c  + qbqc)  

2v/5[l + 2 q u  + q b  + q c  + 3 q u q ? b  + 2 q u q c  + q b q c  + 4 q u q b q c l  
( T i )  = 

irrespective of the size of D. In practice, of course, (PA), (Ti) and (Ti) must be calculated 
self-consistently through the use of equations (23) and (33)-(36). 

4. Spin wave behaviour and energy gap considerations 

In this section, we set limits on the regions where the TH/RPA model might be expected 
to hold. In the first place, if we set the crystal field parameter D = 0, the three excitation 
branches reduce to 
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In the limit T = 0 K, (f:) = (3/V5) (Ti) = 3( fi) and so the three excitation branches 
reduce to a single dispersive branch 

El (k):::~ = g p B B A P P  + i{J(o) + K(O) - J ( k ) )  (38a) 

and two non-dispersive branches 

E3 ( ~ ) ? Z : K  = g p B B A P P  + % J ( O )  + K(O)). (38c) 

The first of the three energy branches can be identified with the usual spin wave result. 
At absolute zero, only the IZ, = 3/2) ground state is populated, and so collective modes 
result from excitations involving ground states IZ, = 3/2) to first excited states 
lZ, = 1/2), The non-dispersive branches E, (k )  and E3(k) ,  on the other hand, correspond 
to single-ion excitations from IZ, = 1/2) to IZ, = -1/2) and /I, = -1/2) to IZ, = -3/2), 
respectively, which are not populated at T = 0 K. However, as the temperature is raised, 
(pi) and (pi) will differ from their saturated values, and so three dispersive branches 
will emerge. 

From an examination of equation (23), it is evident that the energy gap A(El(0)), 
can be written in the form 

A = V 6 D  + g p B B A p p  + V 5 ( f h ) K ( O )  -I- (1/2VS){7(TA) - 3V5(pi ) -  6(T;)}J(O). (39) 
As noted earlier, the last term in equation (39) vanishes at T = 0 K, because 
(PA) = (3/d5)  (fi) = 3( fi) at saturation. However at higher temperatures, it is possible 
in the small D limit that (pi) and (Ti) will fall more rapidly than (TA). This will give rise 
to unphysical behaviour, in that the energy gap will increase with increasing temperature. 
Note however that, in the presence of a large crystal field parameter D both (PA) and 
(fd) will decrease more quickly than (pi) with increasing temperature. Ifideed at the 
Curie temperature, (pi) is necessarily finite, while (TA) and ( T ; )  are identically zero. 
Thus for large D the energy gap A will clearly decrease with increasing temperature. 

To probe this question further, self-consistent calculations have been carried out for 
small values of D and K(0) .  From these results we can conclude that the TH/RPA 
model yieldsphysicallyreasonable resultswhen either D/J(O) 2 1 or K(O)/J(O) 3 3. This 
question is taken up again in the next section, where various estimates of the Curie 
temperature are compared and discussed. 

5. The Curie temperature 

In the situation where D = 0, Tahir-Khelli and ter Haar (1962) first showed that the. 
Curie temperature Tc for the S = 3/2 Heisenberg ferromagnet is given by 

in the ordinary RPA. The molecular field (MF) prediction for Tc is given by 
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4 

3 

-.. 
0 

- 2  --THIRPA iO=O1 
-. - ~ - RPA iD=Ol 

? 
L" 
9 Figure 1. The Curie temperature as a function of 

the anisotropicexchange K(O), for D = 0, asgiven 
by: the RPA (equation (40)), the MF (equation 
(41)) and the TH/RPA (equation (42)). These 
results have been obtained using a FCC cubic 
lattice, which of course cannot support an axial 

0 1 2 crystal field. Nevertheless we have chosen to use 
this lattice for comparison purposes. 

1 

Anisotroplc exchange, KiOViiOI 

For the TH/RPA however, we obtain the unique solution 
1 1 

kBTc = a [3 if: J(0) + K(0)  - 0.3J(k) 
(42) 

A comparison of the calculated Curie temperatures for an FCC lattice, obtained using 
the RPA, MF and TH/RPA (equations (40), (41) and (42)) for various ratios of K(O)/J(O) 
can be seen in figure 1. In the limit K(0)  + CO, all the three estimates for Tc coverge. 

The situation for D > 0 is more complex because (Ti) is now finite at Tc. for the 
TH/RPA model we find, using equations (34) and (35), that 

1 [J(O)  + K(0)  - 0.3J(k)] 
2{1 - cosh[P(g6D - 1.5(?'i)J(k))]} 

kBTc = 

where (i) 

(43) 

and (ii) 

(45a) 

(45b) 

1 
8, = -E {exp[P(q6D - 1.5(fi)J(k))]  - l}-' 

8, = -2 {exp[-P(V6D - 1.5(f;)J(k))] - 1}-'. 

N k  

1 

N k  - 
As noted earlier the TH/RPA result gives physically reasonable results at finite tempera- 
tures, when D/J(O) t 1. 

Since (pi) is temperature dependent it is necessary to solve for both (f;) and kBTc 
simultaneously in equations (43)-(45). The computed values of Tc (for K(0)  = 0) in the 
TH/RPA model can be seen in figure 2, as a function of D/J(O). From an examination of 
this diagram it will be observed that D + the predicted value of Tc, obtained using 
the TH/RPA, saturates at 0.98W(O) for a FCC lattice. This is not entirely unexpected since 
molecular field theory predicts a limit of Tc = J ( 0 ) .  As D + x ,  the crystal field ground 
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Figure 2. The Curie temperature as a function of the 
crystal field parameter D, for K(0)  = 0, as given by the 
TH/RPA (equation (43)). 

0 1 2 3 4 
Crystal field, DNiOI 

Table 2. Predicted Curie temperatures kRTc/J(0). 

(a) D-* = ( K ( 0 )  = 0) 

Series (Ising doublet) Mean field 
Lattice [Fisher (1967)] TH/RPA theory RPA 

FCC 0.8162 0.982 1.0 0.0 

( b )  D - 0 ( K ( 0 )  = 0) 

Series (Heisenberg S = 1) Mean field 
Lattice [Fisher (1967)l TH!RPA theory RPA 

FCC 0.767 0.985 1.0 0.765 

Note: ( i )  The results have been scaled so that the mean field results are unity. (ii) The Tahir- 
Kheli and ter Haar values agree remarkably well with the high-temperature series results for 
D = 0. (iii) The ordinary RPA predicts Tc+ 0 as D-* =, which is unphysical. 

state reduces to a IS2 = t 3 /2 )  doublet. Consequently, the magnetic exchange terms are 
only effective within the I &3/2) doublet, with little influence from the high-energy 
1 t 1/2) states. 

Finally, in table 2 the predicted Curie temperatures for the TH/RPA model in the two 
limits D + x and D + 0 are compared with the Green’s function results of Tahir-Kheli 
and ter Haar (1962)) and the high-temperature series results (see for example the review 
by Fisher (1967)). It will be observed that the Curie temperatures of the TH/RPA, for 
small D ,  are disappointingly close to the mean field results. In practice, however, it may 
be possible to achieve better agreement with the high-temperature series by modifying 
the RPA in the spirit of the Callen (1963) decoupling scheme. 

6. Equivalent two-parameter single-particle density operator 

Callen and Shtrikman (1965) first showed that in the absence of crystal fields, the higher- 
order moments calculated from a many-body treatment of the Heisenberg ferromagnet 
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can be mimicked by a temperature-renormalized single-parameter single-ion density 
matrix 

This density matrix yields exactly the same ensemble averages as the many-body treat- 
ment. provided x is chosen such that 

(S ,  )mb = (S ,  ) , p [ = d 5 (  f'; )s = 3 / 2  1. (47) 
Recently however, Bowden and Martin (1990b) have shown that for the S = 1 easy 

axis ferromagnet, it is possible to construct a two-parameter single-particle density 
matrix 

exp{xSz + (y/d6)[3SI - S(S + l)]} 
Tr[exp{xS, + ( y / d 6 )  [3S: - S(S + l)]}] (48) P =  

which reproduces the same ensemble averages (?A) and (Ti) as those calculated using 
the TH/KPA. The need for a second parameter arises because the axially symmetric crystal 
field gives rise to two excitation branches E , ( k )  and E 2 ( k ) .  For spin 3/2 ensembles, there 
are three excitation branches E , ( k ) ,  E , (k )  and E3(k) .  Thus it is of some interest to 
enquire whether or not a two-parameter single-particle density matrix can still be 
constructed which mimics the TH/KPA results. 

For S = 3/2, the single-ion model of equation (48) is characterized by three 
Am = i l  transitions 

= E11/2) = ( x  $- d6y)kBT (490) 

which are the single ion counterparts of the three excitation branches E , ( k ) ,  E 2 ( k )  and 
E 3 ( k ) .  In order to make contact with the TH/KPA, we define x and y via the occupation 
numbers of the corresponding excitation branch 

This ensures that the single-ion description possesses the same thermal occupation 
numbers as that of the TH/RPA. Next, on substituting equations (57)-(59) into the many- 
body expressions for <?:), (?;) and (Ti) (equations (36)-(38)) it can be shown, after 
some manipulation, that 

3exp(3x/2 + d6y/2)  + exp(x/2 - d6y/2) 
- exp(-x/2 - d6y/2) - 3exp(-3x/2 + u6y/2) 

+ exp(-lx/2 - v6y/2) + exp[-3x/2 + 6y/2] 
(51) ('I!) = 2d5[exp(3x/2 + d6y/2)  + exp(x/2 - q6y/2) 

exp(3x/2 + d6y/2) - exp(x/2 - d6y/2) 

2[exp(3x/2 + d6y/2)  + exp(x/2 - g6y/2)  
- exp( -x/2 - d6y/2) + exp( -3x/2 + d6y/2) 

+ exp( -x2 - d6y/2)  + exp( - 3x/2 + d6y/2)] 

( Q )  = 
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exp(3x/2 + v6y/2) - 3exp(x/2 - v6y/2) 

(53) 
+ 3exp( -x/2 - v6y/2) - exp( -3x/2 + v6y/2) 

+ exp( -x/2 - d6y/2)  + exp( -3x/2 + v6y/2)] 
(”) = 2d5[exp(3x/2 + v6y/2) + exp(x/2 - d6y/2)  

These results are identical to the single-ion averages obtained using equation (48). 
Thus the temperature-renormalized effective single-particle density matrix operator of 
equation (48), yields the same ensemble averages as the many-body TH/RPA for both 
S = 1 and 3/2 spin ensembles. 

7. Conclusions 

In this paper it has been shown that large axially symmetric quadrupole crystal field 
interactions can be incorporated into a many-body treatment of the easy axis Heisenberg 
S = 3/2 ferromagnet, using the transformed Hamiltonian/random phase approximation 
(TH/RPA). In addition, explicit expressions have been given for (i) the ensemble averages 
(f;), and (ii) the Curie temperature Tc. Within the context of the TH/RPA these 
expressions are ‘unique’ in marked contrast to earlier work. Finally, a single-particle 
model, in the spirit of Callen and Shtrikman, has been constructed which yields 
exactly the same ensemble averages as the TH/RPA for S = 3/2 easy axis ferromagnetic 
ensembles. 
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